
Improved Routing and Sorting on Multibutterflies

Bruce M. Maggs Berthold Vöcking*

November 1996
CMU-CS-96-192

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

* Dept. of Mathematics and Computer Science, and
Heinz Nixdorf Institute
University of Paderborn

33095 Paderborn, Germany

Mtypmmd for prafoäg rateos«..
DteAstkra ünähnited

19961226 017 DTrceTOLTTYlKSPECTBB 4

Bruce Maggs is supported in part by the Air Force Materiel Command (AFMC) and ARPA under Contract
F196828-93-C-0193, by ARPA Contracts F33615-93-1-1330 and N00014-95-1-1246, and by an NSF National Young
Investigator Award, No. CCR-94-57766, with matching funds provided by NEC Research Institute. This research
was conducted in part while he was visiting the Heinz Nixdorf Institute, with support provided by DFG-Sonder-
forschungsbereich 376 "Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen". Berthold Vöcking is
supported in part by DFG-Sonderforschungsbereich 376, and by DFG Leibniz Grant Me872/6-l.

The views and conclusions contained here are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either express or implied, of AFMC, ARPA, CMU, or the U.S.
Government.

Keywords: Multibutterfly networks, AKS sorting network, routing algorithms, sorting algorithms

Abstract

This paper shows that an TV-node AKS network (as described by Paterson) can be embedded in a ^-node
degree-8 multibutterfly network with load 1, congestion 1, and dilation 2. The result has several implications,
including the first deterministic algorithms for sorting and finding the median of n log n keys on an n-input
multibutterfly in O(logn) time, a work-efficient algorithm for finding the median of n log2 n log log n keys
on an n-input multibutterfly in O(lognloglogn) time, and a three-dimensional VLSI layout for the n-
input AKS network with volume 0{n3l2). While these algorithms are not practical, they provide further
evidence of the robustness of multibutterfly networks. We also present a separate, and more practical,
deterministic algorithm for routing h relations on an n-input multibutterfly in 0(h + logn) time. Previously,
only algorithms for solving h one-to-one routing problems were known. Finally, we show that a 2-folded
butterfly, whose individual splitters do not exhibit expansion, can emulate a bounded-degree multibutterfly
with an (a, ß) expansion property, for any a ■ ß < 1/4.

1 Introduction

In 1983, Ajtai, Komlos, and Szemeredi devised a network for sorting n keys in O(logrc) depth [1]. This
result was surprising because no improvement in the asymptotic depth of sorting networks had been made
since Batcher's invention of the 0(log2n)-depth bitonic sorting network 15 years earlier [4]. Indeed, the
difficulty of improving on Batcher's construction led Knuth to conjecture that there was no sorting network
with depth O(logra) [18, p. 243].

The AKS sorting network differed from previous constructions in one crucial aspect: it incorporated
expansion into its structure. Expansion is a graph-theoretic notion. An / x r bipartite graph is said to be an
(a, ß)-expander if every set of k nodes on the left side has at least ßk neighbors on the right side, provided
that k < al, where a and ß are constants, a < 1, and ß > 1. As it happens, a random graph is likely to be an
expander [29]. There are also explicit constructions of expanders. These constructions were first discovered
by Margulis [24, 25], and have since been greatly improved. So far, however, the expansion achieved by the
explicit constructions is still about a factor of two smaller than the expected expansion of a random graph.
A nice summary of the state of the art in expander graphs can be found in [17].

One drawback to the AKS network is that the big-0 notation hides large constant factors. In contrast,
the depth of the bitonic sorting network is (log2n)/2+ (logn)/2 [11, p. 650]. Some progress has been made
in simplifying the AKS network and in improving the constant factors in its depth [28], but for practical
values of n, the depth of bitonic sort is much smaller. To date, however, all 0(logn)-depth sorting networks
are based on the AKS construction.

Two notable AKS-based sorting networks are Leighton's sorting network [19], and Ma's fault-tolerant
sorting network [23]. Leighton shows how to construct an iV-node degree-3 network capable of sorting N
keys in 0(\ogN) steps. His network implements the columnsort algorithm, and uses a 0(7V/log7V)-input
AKS network in a pipelined fashion. Ma shows how to construct an n-input sorting network with O(logn)
depth that can sustain constant-probability passive faults at its comparators, and still sort correctly with
high probability. In the passive fault model, a faulty-comparator can be viewed as having been removed
from the network.

Another network that incorporates expansion into its structure is the multibutterfly. The basic structure of
this network was introduced by Bassalygo and Pinsker [3], who showed that two back-to-back multibutterflies
form an 0(logn)-depth nonblocking network. Here n is the number of input and output terminals of the
network. A network is called nonblocking if every unused input terminal can be connected by a path through
unused edges (or nodes) to any unused output terminal, regardless of which inputs and outputs have already
been connected. Bassalygo and Pinsker did not use the term multibutterfly, and their network differed from
the multibutterflies considered in the rest of this paper in one technical detail: although the out-degree of
each node in the network was bounded, the in-degree was not necessarily so. It is not difficult, however,
to modify their construction so that the degree of all nodes is bounded; they probably did not consider it
important.

The term "multibutterfly" was introduced by Upfal [35]. In his seminal paper, Upfal proved that an n-
input multibutterfly can route any permutation of n packets from the inputs to the outputs of a multibutterfly
in O(logn) steps deterministically. (In fact, he showed that even a collection of log n permutations can be
routed in O(logn) time.) Because it can sort, the AKS network can also solve these problems in O(logn)
time. In the AKS network, however, the running time of the algorithm cannot be separated from the size
and depth of the network. In the multibutterfly, on the other hand, although the O(logiV) bound on the
running time hides some moderately large constants, the network itself can be constructed by merging just
two copies of the ordinary butterfly network (hence the name multibutterfly). Furthermore, simulations
show that the running time of the routing algorithm is actually smaller than the O (log N) upper bound
implies [20, 22]. Hence, a case can be made for the practicality of multibutterflies, and several studies have
explored their implementation [9, 10, 13, 14].

Although no deterministic O(logn)-step sorting algorithm for multibutterflies was previously known, the
network was known to have some capabilities that the AKS network was not known to have. For example,
Leighton and Maggs showed that multibutterflies are highly fault tolerant [20]. In particular, they showed
that even if an adversary is permitted to place / worst-case fail-stop faults in a multibutterfly, there is still
some set of n - 0(f) inputs and n-O(f) outputs between which any permutation of packets can be routed

in O(logn) steps. In the fail-stop fault model, a faulty node cannot communicate with its neighbors at all.
Fail-stop faults are more difficult to tolerate than passive faults. Leighton and Maggs also showed that even if
every node in the network fails with some small, but constant, probability, with high probability there is still
some set of 6(n) inputs and Q(n) outputs between which any permutation can be routed in O(logn) time.
As Bassalygo and Pinsker showed, the multibutterfly can also be used to construct a nonblocking network.
Arora, Leighton, and Maggs termed two back-to-back multibutterflies a multi-Benes network, and showed
that not only is a multi-Benes network nonblocking, but any set of new paths can be established in this
network in O(logn) steps, even if many requests for new paths are made simultaneously [2]. The algorithms
for reconfiguring a multibutterfly with faults and for establishing disjoint paths were later improved in [15]
and [30], respectively.

1.1 Our results

In this paper, we show that multibutterfly networks are at least as powerful as the AKS sorting network. In
particular, we show that an TV-node AKS network can be embedded in a ^-node degree-8 multibutterfly
with load 1, congestion 1, and dilation 2. As a consequence an TV-node multibutterfly can emulate an TV-node
AKS network with constant slowdown.

The embedding has several immediate implications. The emulation of the AKS network by the multibut-
terfly, along with Leighton's columnsort algorithm [19], yields the first deterministic 0(log TV)-step algorithm
for sorting TV elements on an ./V-node multibutterfly. The sorting algorithm can then be used to construct
the first deterministic 0(logTV)-step algorithms for finding the median of TV elements and for routing with
combining on multibutterflies. It also yields a work-efficient deterministic algorithm for finding the median of
TV log TV log log TV elements in O (log TV log log TV) time on an TV-node multibutterfly. Because the embedding
of the AKS network into the multibutterfly has constant congestion, bounds on the VLSI layout area and
volume for the multibutterfly translate to the AKS network as well. An n-input multibutterfly network can
be laid out in two dimensions with area 0(n2), and in three dimensions with volume 0(n3/2), and these
bounds are tight. The two-dimensional layout area of the AKS network was known before [6, 7], but the
three-dimensional layout is new.

We also present two deterministic algorithms for solving /i-to-one routing problems on an n-input butterfly
in 0(h + logn) time. One applies when h is known, and the other when it is not. Previous routing algorithms
could solve h one-to-one problems in a pipelined fashion [20, 35], but assumed that each packet carried the
label of the one-to-one problem to which it belonged. An algorithm for solving /i-to-one routing problems
can also used to route h relations. In an h relation, each source sends at most h packets, and each destination
receives at most h packets. One motivation for designing algorithms that route h relations is that routing
an h relation is the primitive communication step in the BSP model of computation [36], for which there are
growing libraries of parallel programs [16, 27, 26].

Finally, we show that a 2-folded butterfly (i.e., a degree-8 multibutterfly), whose individual splitters do
not exhibit expansion can emulate a bounded-degree multibutterfly with an (a,/?)-expansion property, for
any a ■ ß < 1/4.

The fact that an TV-node multibutterfly network contains an TV-node AKS network does not imply that
the multibutterfly is an inherently impractical network. Although the sorting algorithm implied by the
embedding is not practical, there is no requirement that the multibutterfly be used in this fashion. Indeed,
independent of the sorting algorithm, the multibutterfly is an efficient and highly fault-tolerant routing
network.

1.2 Other related results

Prior to this work, the fastest deterministic algorithm for sorting TV keys on an TV-node multibutterfly was
the Sharesort algorithm of Cypher and Plaxton [12]. This algorithm was designed to run on the butterfly
network, or on any other hypercubic network. Since the multibutterfly network contains a butterfly network,
it applies to multibutterflies as well (but doesn't take advantage of the expansion in the multibutterfly).
There are several variants of this algorithm. The fastest uniform version runs in 0(logTV(loglogTV)2) time,
but there is a non-uniform version that runs in O(logTVloglogTV) time. Our embedding result yields an
0(logTV)-time algorithm for the multibutterfly. Note that the sorting problem can also be solved on an

TV-node butterfly (or multibutterfly) in 0 (log TV) time using the randomized Flashsort algorithm of Reif and
Valiant [21, 34].

Prior to this work, the fastest deterministic selection algorithm for multibutterflies was the algorithm
of Berthome, Ferreira, Maggs, Perennes, and Plaxton [5]. This algorithm selects the Arth largest element
from among TV elements on an TV-node butterfly (or any other hypercubic network) in 0(log TV log* TV) time.
Like the Sharesort algorithm, this algorithm does not make use of expansion when run on a multibutterfly.
Since the selection problem can be solved in linear time sequentially [8], this algorithm, which performs
TV log TV log* TV work, is not work efficient. Furthermore, Plaxton [31] showed that any deterministic algorithm
for solving the selection problem on a TV-node hypercubic network requires Q({M/N) log log TV + log TV)
time in the worst case, where M is the number of input elements. This translates to a lower bound of
fi(M log log TV + TV log TV) on the work required. Hence, there can be no deterministic work-efficient selection
algorithm on a hypercubic network. Recently, Plaxton showed that for M/N = log TV, any deterministic
algorithm for selection on a bounded-degree TV-node hypercubic network requires fi(log3/'2 TV) steps [32]. He
also presents an algorithm that runs in 0(log3/,2TV(loglogTV)2) time on any TV-node hypercubic network.

For bounded-degree expander-based networks, two optimal deterministic algorithms for selection are
known. For the case of finding the kth largest out of TV elements on an TV-node network, the AKS
sorting network combined with columnsort can be used to sort the elements (and hence solve the se-
lection problem) in O(logTV) time [19]. This algorithm is optimal because selection on any bounded-
degree TV-node network requires fi(logTV) time. The kth largest of M elements, M > TV, can be found
in 0((M/N) +logTVloglog(M/TV)) time on an TV-node expander-based network using an implementation of
a PRAM algorithm due to Vishkin [37] that invokes the AKS sorting network and columnsort as subroutines
[31]. This algorithm is work-optimal for M/N > log TV log log(M/TV)). Our embedding result implies that
a multibutterfly network can perform both of these algorithms. Note that the latter algorithm beats Plax-
ton's lower bound for hypercubic networks, thus implying a separation in power between expander-based
networks and hypercubic networks. Rappoport [33] has recently proved an even larger separation, namely
that the largest butterfly that can efficiently simulate a TV-node multibutterfly has fewer than TV6 nodes, for
all constants e > 0. For w(l) < M/N < o(logTVloglog(M/TV)) the asymptotic complexity of selection on
bounded-degree networks is currently not known.

1.3 Outline

The remainder of this paper is organized as follows. In Sections 2 and 3 we define the multibutterfly and
AKS networks, respectively. Our embedding of an AKS network into a multibutterfly network is presented in
Section 4. Algorithms for routing /»-relations on multibutterflies are described in Section 5. In Section 6 we
show that a 2-folded butterfly can simulate a multibutterfly with an (a,ß) expansion property. We conclude
in Section 7 with some open problems.

2 Multibutterfly networks

A d-dimensional multibutterfly network (MBF) consists of d+1 levels, each consisting of 2d nodes. Let (£,j)
denote the jth node on level I. For each level 0 < I < d, the nodes on level I are partitioned into 2l sets
Aifi,.. .,Ai<2i-

J
Atii := {(t,j) 2d-

The nodes in Aiti are connected to some nodes in the sets At+i^i and Ae+i,2i+i- The subgraph induced by
the nodes in these three sets is called the splitter of Atj. It consists of two concentrators, a left and a right
one. The left concentrator is defined as the subgraph induced by the nodes in Atti and Ai+i^i, and the right
concentrator is defined as the subgraph induced by the nodes in Atj and Ai+lt2i+i. The nodes on level 0 of
a d-dimensional multibutterfly are called input nodes, and the nodes on level d are called output nodes.

All edges of a multibutterfly network are inside its concentrators, i.e., each concentrator is a bipartite
graph G= {AUB,E) with A = At>i and B = Ai+li2i+1 or B = y^+1|2i+i, for 0 < £ < d- 1. The edges in

a concentrator can be chosen in an arbitrarily fashion, provided that each node in A has degree k, and each
node in B has degree 2k, for some constant integer k. This defines a multibutterfiy of degree 4k.

The multibutterfiy structure is very similar to that of the butterfly network, i.e., the butterfly network
is a special variant of the multibutterfiy of degree 4. The basic advantage of the multibutterfiy compared
to the butterfly is that the multibutterfiy may satisfy some expansion properties if the edges inside the
concentrators are chosen properly. Let T(X), for a subset of nodes X, denote the set of the neighbors of
the nodes in X. Then we say a concentrator G = (A U B,E) has (a, ß)-expansion if for any set X C A
with \X\ < a\A\, we have \T(X) n B\ > ß\X\. A multibutterfiy is said to have (a,/?)-expansion if all its
concentrators have (a,/?)-expansion. Upfal [35] shows that for any d, k, a, and ß with 2ß < k — 1, and
a > l/(2ß){2ße1+2l3)-1^d-2'3-1\ there exists a multibutterfiy of degree 4k with (a,/?)-expansion.

Finally, we define a subclass of the multibutterfiy networks which includes those multibutterflies that
can be constructed by superimposing butterfly networks. Suppose the edges of a multibutterfiy of degree
d can be colored by k colors such that the network induced by the edges of each color are isomorphic to
the butterfly of degree d. Then this multibutterfiy is called a k-folded butterfly since it can be constructed
by folding A; butterfly networks. The labels of the nodes in the At,i sets of each of these butterflies are
permuted and the k nodes of distinct butterflies are merged together to form each multibutterfiy node. The
k butterfly networks that define a multibutterfiy are called underlying butterflies and we denote them by
BFu...,BFk.

3 The AKS network

Our description of the AKS network is based on Paterson's description [28]. Ours is a little more general
than Paterson's because we do not describe the building blocks, i.e., the separators, and the sorters in detail.

The AKS network is a sorting network that consists of h ■ T levels that are partitioned into T stages of
width n and of constant height h. Let

Vt := {(i,h + t-H)\0<i<n-l,0<h<H-l}

be the set of nodes on stage t, for 0 < t <t — 1. Then each node (i, j) is connected via a forward edge to
node (i, j + 1), for 0 < i < n - 1 and 0<j<H-T— 1. In addition to the forward edges, the network
contains compare-exchange edges which connect nodes on the same level, i.e., each forward edge connects a
node (i, j) with a node (i',j), for 0 < i < i' < n - 1 and 0 < j < H -T—l. Each node is incident to at most
one compare-exchange edge.

The AKS network sorts n elements in 2 • h ■ T— 1 = 0(T) steps. At the beginning of step 0, the elements
are placed at the nodes on level 0. In each even step, the two elements located at the endpoints of each
compare-exchange edge are compared, and the elements are exchanged if they are in the wrong order. In
each even step, the elements are moved along the forward edges to the next higher level. After step 2-h-T—2,
the elements are placed in sorted order on the nodes of level H -T — 1.

Each stage of the AKS network consists of several independent building blocks. All of the compare-
exchange edges are inside these building blocks. We initially describe the widths of these blocks as if they
were real numbers. Ultimately, we will replace these ideal values by appropriate integers. Most of the building
blocks are separators, some are sorters and, some are forward blocks. We give a brief overview of these blocks
without going into details. Each separator of width m returns a partition of its m input elements into four
parts, FL (far-left), CL (center-left), CR (center-right), FR (far-right). We do not describe the structure of
the separators but we are interested in the sizes of the four partitions. The size of FL and FR is A • m and
the size of CL and CR is (1 — A), e.g, A = 1/8. The sorters return the m input elements in sorted order.
It is convenient to implement the sorters as Batcher's bitonic sorting network [4]. All sorters have constant
width, so they can be implemented in constant height h. The forward blocks include only forward edges and
no compare-exchange edges.

In the following, we describe the widths of the building blocks and which output partitions of the blocks
in stage t — 1 are connected to which input partitions of the blocks in stage t, for 1 < t < T — 1. Our
description is based on an oblivious sorting algorithm structured about a complete binary tree of depth log n
which we imagine with the root at the top (on level 0) and leaves below (on level logn). The algorithm
works in T stages that are equivalent to the stages of the AKS network.

Consider a binary tree B with "bags" at each node. Initially, the set of n elements to be sorted is
contained in the single bag at the root. Suppose each node of the tree partitions the elements that it gets
from its parent into two halves and sends the smaller half to the left child and the larger half to the right
child. Then the elements will arrive in sorted order at the leaves of the tree. Unfortunately, it is not possible
to split the elements exactly into the two halves at each node in constant time. The strategy of the AKS
algorithm is to make an approximate partition of elements, which can be done by the separators. The
elements that are sent to the wrong child are then retransmitted in a later stages.

We will not describe the algorithm in detail. Instead, we consider the flow of the elements between the
bags. The proof that the algorithm sorts can be found in Paterson's article [28]. Associated with each node
of the tree is a bag that contains a number of elements. The size of a bag is the number of elements stored
in the bag, and the capacity of a bag is the maximum number of elements that can be stored in that bag.
During most stages, a bag is either empty or filled to its capacity. The capacity of each bag at level I is s • A1

for some constant A, e.g. A = 3, and some value of s that decreasing with time.
Special situations occur at the highest and lowest nonempty levels of the tree, so we start with a descrip-

tion of the sorting process at intermediate levels. The algorithm works in T stages beginning with stage 0.
Each stage T is implemented in stage T of the AKS network. At odd stages (some) odd levels are full and
all the bags at the even levels are empty. The opposite holds at even stages. At each stage the elements in
any full bag are partitioned by a separator into the four partitions FL, CL, CR, and FR. The FL and the
FR parts are sent back to the parent bag and the CL and CR parts are transferred down to the left and
right child bags, respectively.

Stage t Stage t + 1

(1 - A) bjlA ^ O ^ O

I capacity vb

Figure 1: Reduction of bag capacities after each stage.

Consider a bag with capacity b that is empty at the beginning of some stage and which is filled to its
new capacity vb at the end of the stage, as shown in Figure 1. Then

vb = 2\bA+{1-X}-b

1A
which gives

We assume that v < 1, e.g. v = 43/48. Thus, the capacities diminish at each stage and keys are squeezed
down the tree in the course of the algorithm. We define the capacity of each bag at level £ at the beginning
of stage t to be

c'W:=(1-4^)-»-''t-^-
At the beginning of the algorithm all bags except for the root are empty. The root is filled to its capacity,

i.e., it contains (1 - 1/(4A2) ■ n keys. Since we would like the root to behave as if it were an ordinary node,
we place above it a subset of the elements of size l/(4yl2) • n. This subset we call the cold storage. The root
exchanges keys with the cold storage as with a parent. The cold storage simulates half the root's parent,
one-fourth the root's grandparent, and so on. The capacity of the cold storage in a step t is therefore

-.c_2(*) + —.c_4(t) + ...=
16 ~'v ' 4A2

iff is even, and
1 , . 1 , . n ■ v*
-.C_lW + -.C_3(t) + ...= 1:r

if t is odd. The cold storage is the simplest structure in the AKS-network. It is implemented as a forward
block.

During the course of the algorithm the elements migrate down through the tree. We will arrange that
there is at most one partially filled level. Above this, the levels are alternately empty and full as already
described; below all the levels are empty. To achieve this, we require that at the partial level each bag should
send up to its parent the normal number of elements if it has sufficiently many. After this requirement is
met, any remaining elements can be sent down to its children in equal numbers.

In the final stages some of the separators are replaced by sorters and forward blocks. In particular, if
the capacity of the root bag is smaller than r, for some constant r, e.g. r = 160, then the set of elements in
the root bag and the cold storage is sorted and separated into a left and right half. From these halves the
root and the cold storage for each subtree can be immediately formed. After the first splitting step, a new
splitting step will be required at regular bounded intervals, i.e., whenever the capacity of a bag becomes
smaller than r, the separator is replaced by a sorter and the elements are split into two halves. The algorithm
finishes after stage T — 1, in which the elements of the bags on some level are sorted and all bags below this
level are empty.

The widths of the building blocks in the AKS network can be extracted from the above description. All
sizes are specified as real numbers. Paterson gives a simple recipe for replacing the real numbers by integers
without straying far from the ideal values. For each subtree rooted at a nonempty node, if the ideal total
size of the subtree is a, then the actual size is 2[a/2].

4 Embedding the AKS network into a multibutterfly

In this section, we embed an AKS network into a multibutterfly network. We denote the width of the AKS
network by n, the number of stages by T, and the height of the stages by h. We assume that the widths of
the building blocks are defined by the parameters A, A, v, and r as described in Section 3. We prove the
following result.

Theorem 4.1 An AKS network of size N can be embedded into a 2-folded butterfly of size M < K-N + O(N)

with dilation 2 and congestion 1, where K is a small constant depending on the AKS parameters v, A, r, and
h.

Suppose that the AKS parameters are chosen according to Paterson's recommendation, which should
minimize the size of the AKS network, i.e., v = 43/48, A = 3, r = 160, and h — 36. Then K is smaller than
1.5. In the following, we describe the embedding and prove the result on the relationship of the network
sizes.

Rough embedding. The description of the AKS network is structured about a binary tree. The nodes of
this tree represent bags whose sizes vary from stage to stage, i.e., over time. Instead of looking at one binary
tree B with growing and shrinking bag sizes, we can imagine that we have T trees B0, ■. • ,-BT-I of fixed
sized batches, such that the batches in the tth tree represent the building blocks of the 2th multibutterfly
stage. In particular, each bag of tree Bt with size s is realized as a building block of width s and height h
in stage t.

A natural partition of the AKS building blocks is to divide the blocks according to their stages. Then
each partition corresponds to one of the t trees. In fact, this partition is the one implemented in the AKS
network. For the embedding into the MBF, we divide the blocks of the AKS network according to the
tree-levels into partitions P0,..., Piog„. That means that partition Pt includes all 2l -T building blocks that
are associated to a node on the tth tree-level in one of the T trees. In addition, we add the forward blocks
of the cold storage to partition Po- Define the size of a partition Pi to be to the sum of the sizes of all bags
on the respective tree level I. This size is denoted by \Pi\. Note that some bags in each partition have size
0, e.g., all bags below the partial level.

At,

At+l:2i

Stage 0 1 2 3...

Jj^n 4
i*+l,2» + l

Pl+l,2i+l

Level ^

Level £ + 1

Figure 2: Rough embedding of the AKS network into the multibutterfly.

The MBF building blocks associated with the bags of partition Pi are embedded in the £th level of the
MBF. Of course, we have to define more precisely which nodes in the building blocks in partition Pi are
mapped onto which nodes of the MBF in level £. Divide each partition Pi into equal-sized subpartitions
.P/,0,..., Pi^t-i such that subpartition Piti includes all blocks that correspond to the ith node on level £ of
the AKS tree B. Then for 0 < i < 2l - 1 and for 0 < £ < logn - 1, subpartition Ptii includes all parent
bags of the bags in the subpartitions Pi+i^i and Pt+iji+i- Embed the AKS nodes of partition Piti into
the MBF-nodes of the set Atj. Of course, in order to get an embedding with load 1, it is required that
\Ai,i\ > h ■ \Pij\ which is the number of nodes represented by the partition Pi^. It will be seen later that
the size of Atj has to be a little bit larger than this value.

Now suppose we add all AKS edges to the MBF regardless of the multibutterfly structure, i.e., we
connect each pair of MBF nodes representing a pair of adjacent AKS nodes by an edge. Then each AKS
edge that connects a node of a parent bag in subpartition Piti to a node of a child bag in subpartition Pi+i,2i
or Pi+x,2i+i is represented by an edge inside the multibutterfly splitter containing the sets Aij, Ai+ii2i,
and At+it2i+\. In addition, the AKS edges inside the building blocks, and thus inside the subpartitions,
are represented by edges inside the Aij sets. Thus, we can restrict ourselves to give a description of the
embedding inside the splitters.

Fine embedding. Consider a splitter consisting of the sets A := Aiti, L :— Ai+it2i and R := Ai+i 2j+i.
Define m := \A\. The edges between A, L, and R are defined by two butterfly networks BFi and BF2 that
are folded together to a multibutterfly. We assume that the embedding is done for the levels log n to to £ +1.
That means that the folding of BFX an BF2 are fixed up to level £ + 1. We have to describe the mapping of
the AKS nodes in subpartition P := P^; onto the MBF nodes in A.

First we embed the AKS nodes so that each compare-exchange edge of the AKS network can be simulated
by two edges of BFX. Suppose the nodes in A are labeled (£, 0), (£,1), ...,{£, m - 1), the nodes in L are
labeled (I + 1,0),..., (£, m/2 - 1), and the nodes in R are labeled (I + 1, m/2),..., (£, m - 1), so that each
node (I, v) G A is connected by an BFX edge to node (£+l,v) and (£+l,v + m/2 (mod m)) from LöR.
Then each node in A is connected by a left edge to a node in L and by a right edge to a node in R.

We embed each pair of AKS nodes u and v of P that are connected by a compare-exchange edge to two
nodes (£, u') and (£, v') of A, respectively, so that v' - u1 - m/2. Then the AKS edge between u and v can
be simulated by a path of length 2. The path is

{£,u')B-% {£+l,u') BFX (£,v')

Note that the path uses only left edges of BF\.
Now we embed the forward edges inside the building blocks. Until now we have not used the freedom to

determine the folding of the two butterflies, i.e., we have not fixed the edges in BF2. Suppose we connect
each node of the set R to two nodes in A such that each node in A is adjacent to one node in R. Then these

edges are admissible choices for the edges in BF2. We use this fact to realize the forward edges. Consider an
AKS node u E P. Suppose u is a node in row t of the AKS and u is connected by a forward edge to a node
v in row t + 1. Let u be embedded in node (£, u') and v in node {£, v') of A. We simulate the edge between
u and v by a path of length 2 between (£, u') and (£, v'). This path consists of a right BFX edge and a right
5i<2 edge. The path is

(tjU')B4^e+l,u')B42(£,v') .
Note that this plugs in an admissible BF2 edge between (£ + 1, u') and (£, v').

Next we embed the forward edges between distinct building blocks, i.e., the edges between adjacent AKS
nodes embedded in level £ and level £ + 1. Let CL C L and CR C R be two sets of nodes that are arranged
symmetrically, i.e., Cfl = {(£ + 1, v + m/2) | (£ + l,v) € CL. Define m' := |CL U Cfl|. Furthermore, let
C C A be a set of nodes on level £ of size m'. Suppose none of the BF2 edges that we have plugged in
until now is incident to a node in CL, CR, and C, and suppose we plug in an arbitrary matching of BF2
edges between CL U CR and C. Then these edges are admissible BF2 edges. Now define CL to be the set of
nodes in L that should be connected to nodes in A, and define CR to be the set of nodes in L that should
be connected to nodes in A. We assume that CL and CR are arranged symmetrically. This can be done
because the embedding into the two submultibutterflies below L and R can be assumed to be isomorphic.
Unfortunately, we have already fixed the BF2 edges incident to the nodes in CR for embedding the forward
edges inside the building blocks. Therefore, we have to modify the above embedding slightly. Define CCA
to be the set of m' nodes above the nodes in CL and CR, i.e., C := {(£, v) \ (£ +1, v) G CL U CR}. We change
the above embedding so that no AKS node is mapped onto the nodes in C. This has a nice consequence:
the BF2 edges incident to CL and CR are not used for implementing the forward edges inside the building
blocks. Finally, define C C A to be the set of nodes that must be connected to the nodes in CL and CR.

Then we can simulate these edges by an appropriate matching of BF2 edges between CL U CR and C that
completes the description of the embedding from P into A. The load of our embedding is 1, the dilation is
2, and the congestion is 1 since no multibutterfly edge is used for simulating more than one AKS edge.

In order to implement the above embedding we have to assume that the size of A is not to small, or the
other way round, that the size of partition P is not to big, i.e., the equation h ■ \P\ + \C\ < \A\ must be
satisfied. Note that \C\ < 2 • \P\, \P\ < \Pi\/2i, and \A\ < m/2*, with m denoting the number of nodes on a
multibutterfly level. Thus, the above description can be implemented if

(h + 2)-\Pl\<m, (1)

for every tree level £ of the AKS network. This defines a constraint on the relationship between the size
of the AKS network and the multibutterfly. In order to investigate this constraint, we first calculate some
properties of the AKS network.

Properties of the AKS network. Define the capacity Ci{t) of a level I in the AKS tree to be the sum
of the capacities of all bags on this tree level. Then

Ci(f) =*•<*(*)= (l-^j) ■n.vt.{2Af

Note that the cold storage simulates a bag half the size of the root (the root's parent), one quarter the size
of the root (the root's grandparent), and so on. Thus, we can imagine the cold storage as partitioned into
an infinite number of virtual levels -1, -2, -3, and so on, such that the above equation for Ct{t) holds for
any integer —00 < I < logn and t > 0.

In the following, we say two tree levels I and fare congruent if £ S (! (mod 2). Analogously, we say a
tree-level I and a stage t are congruent if t 2 t (mod 2). For short we write I = I' or I = t, respectively.
Further, we say tree level £ is above tree level £' if £ < £', and £ is below £'{{£> £'. In each stage t, each tree
level £ above the partial level is filled to its capacity if £ 2 t, and is empty if £ ^ t. All tree levels below the
partial level are empty.

For a stage t, define At{t) to be the sum of the capacities of all tree levels above level £ and congruent to
t. Then

M*) = Ci-2(t) + Ct-i(t)+Ct-6(t) + ...

V ' i = -(l-2)

= (l-4^)-»^-(2^-2-D4A)-'

= n • i/* • (2A)/-2

i=0

if d = t, and

= (i-47ä)-»-"'-(^-i-f;(^)-'
^ / ••—n

n-v*- (2A)1'1

\{d^.t. Suppose £' is the partial tree level in stage t. Then the sum of the number of elements in the bags
of the tree levels above £ is At(t) if £ < £'. Of course, this sum can be at most n. As a consequence, if
Ai(t) > n, then tree level £ is below the partial level. Define

$:=(/-2). I«, (^)

Then tree level £ is below the partial level, and hence empty, in every stage t < tfa, since

..tu At(t) > n ■ i/'5 • {2A)-V-V = n .

Define

«i =<•>■*. (n) •
Then tree level £ is filled to its capacity in every congruent stage t > t[, because

M*) + Ct{t)

< | 1 - -^-) ■ n • i/*i • {2A)1 + n • i/'i • (2A)/"2

which means that .£ is above the partial level. Further, define

= n .

4 := log
n(i-4^)-»

+ '-log„ T

Then the splitting step of tree level £ is in the first congruent stage t > t\. This is because

Ct(ti)=(l-^yn.^-(2A)i = r ,

which means that Ci(t) > r, for t <tl2, and Ct(t) > r, for t < t\. Finally, we show that the AKS algorithm
finishes with the splitting step in level

log2 4A2J r)

in stage T such that T is the smallest integer congruent to t that satisfies

T>ti' r-^(S log2n-logy (^)-e(l) •

This is because T = 4 , and the number of elements stored in bags of levels below I* in stage T is 0 (since
Ct(T) + At(T) > n), and because t is the smallest level that satisfies these two conditions.

The size of the AKS network. In this section, we calculate an upper bound on the size of the AKS
network that can be embedded into a dimensional multibutterfly with m nodes on each level according to
the above description. That means we are looking for the smallest AKS network that fulfills equation 1, i.e.,
(h + 2) • \Pt\ < m, for every level I of the AKS tree. We have to bound the size of each partition Pt. We
first assume ideal batch sizes and show later that the results for these values are close to the results for the
correct integer values.

A special situation occurs for partition P0. This partition includes the root bags and the cold storage.
The size of the root bag in an even stage t is C0{t), and in odd stages the size is 0. The size of the cold
storage in a stage t is Ao(t). Hence, we have

\Po\ < J2C0(2t) + J2Mt)
t=o t = 0

)oo

4A2J + 4A2 + 2 A

= »(^)(T^)-
v v '

= : Ki{v,A)

Now we bound the size of partition Pt, iox \ < I < t. We first ignore the effects of the splitting step,
i.e., we assume that r = 0. Then the size of Pt can bound as follows.

• In each stage t = d with tlQ < t < t[, the size of the tree level is at most n - At (t).

• In each stage t = d with t > t[, the size of the tree level is at most Ct{t).

• In all other stage the size is 0.

Thus, for 1 < I < t, we have

\Pt\ < £ (n-At(ti + 2t)) + J2Ct(t{+2t)
t-0 t=o

n ■ z/° • (2A) 1-2 It

t=0

+n • z/'• (2A/• jry *
t=0

1O^Qä) + 1UA2.(I-^)
= :K2{V,A)

under the assumption that r = 0. Now we assume r > 0. That means that the size of tree level I is increased
by At{i) in each stage t from the splitting stage of level I to the splitting stage of level I + 1. Therefore the

10

above bound is increased by at most

r«2+1i+2 > 1+2

£ AW < (log, (£)+2)- n -^.(2^-

< liofcl^+aV r'2r_1

< n> l°g,(*) + 2

K3(l/,A)

Up to now we have assumed that all bags have ideal sizes as real numbers. But the integer sizes can
be bigger than the ideal ones. Fortunately, both values differ only slightly, i.e., each bag of ideal size 6 has
integer size at most 6 + 2 [28]. Consider a level £. The number of congruent stages between stage tlQ and t[is
at most logv(v/2A)/2, and the number of batches on level £ in a stage is at most 2l > 21' > (1 - 1/4A2) • n/r.
In each congruent stage t\ < t < 22

+1 + 1, all bags on this level have ideal size at least ur/A, which is an
upper bound on the bag size in stage tl2

+1 + 1. Further, all bag sizes in stages before tl0 and after t2
+1 + 1

are 0. Thus, the correct integer size of a level is at most an additive of

= : K4(u,A,r)

bigger than the ideal size.
Define R(v, A, r)) := max{Ki,K2 + «3} + «4- Then it holds \Pt\ < R ■ n, for every tree level £. An

AKS network can be embedded into a multibutterfly network with m nodes per level if Equation 1, i.e.,
(h + 2) • \Pi\ < m, is satisfied for every level I. Thus, the embedding is possible if we choose

n :=
(h + 2) -R

The size of the multibutterfly is M = (k>g2 m +1) • m, and the size of the AKS network is N = h-T-n. Thus,
m> M/(log2m+l) and n = N/(h-T). In addition, log2 m = log2 n + 0(1) and T > log2 n■ log, (^-)-e(l).
Thus, we have

„ ^ M-h-T M -h- (log2 n ■ log, (^-) - 0(1))
AT > > L_2f bv V2^t; __n_ _ M K-n(M\

- (A + 2).K.(log2m+l) - (A + 2)-K.(log2n + e(l)) ~M,K °{M)

for K{V, A, r, h) := (1 + 2/h) ■ R/ log, (J£j. (which is at most 1.462 for v = 43/48, A = 3, r = 160, and
h = 36 as suggested in [28]).

This completes the proof of Theorem 4.1.

5 Routing /i-relations on multibutterflies

In this section, we give a deterministic algorithm for routing A-relations on a multibutterfly with (a,ß)-
expansion. Given a d-dimensional multibutterfly, define Vt to be the set of the n = 2d nodes on level £, for
0 < £ < d. The nodes in Vb are called input nodes, and the nodes in Vd are called output nodes. Then an
/i-relation is a set of tuples of input and outputs nodes R C Vb x Vd such that each node v0 G V0 and each
node of vd G Vd appears in at most h of the tuples in R. Each tuple (v0, vd) G R represents a packet that
should be routed from an input node vo on level 0 to an output node Vd on level d.

11

Each multibutterfly node can store only a constant number of packets. We assume that the multibutterfly
has h - 1 additional levels -(h - 1),..., -1 which model the initial storage for the at most h ■ n packets.
Let Vt denote the set of nodes on level £, for -(h - 1) < £ < -1. We assume that each level £ with
-(h - 1) < £ < -1 is connected to level £ + 1 by an (a, ^-expander, i.e., for any X C Vt with \X\ < an it
holds T(X) n Vi+i >ß\X\.

Upfal [35] presents an algorithm for routing a permutation, or 1-relation, in 0(log n) steps. Our algorithm
uses Upfal's algorithm as a subroutine.

Upfal's algorithm. The algorithm routes a set of packets from the input to the output nodes of a multi-
butterfly with (a, /?)-expansion with a > e and ß > 1 + e, for constant e > 0.

The rough routing paths can be explained as follows: a packet stored in a splitter aims to move along an
edge of the left concentrator if its destination is in the submultibutterfly below the left half of the splitter,
and it aims to move along an edge of the right concentrator if its destination is in the submultibutterfly
below the right half of the splitter.

We assume that each input node stores h packets that are partitioned into L batches 5(0),..., B(L - 1),
such that no more than am packets from each batch are routed through any splitter of size m (!). The
indices of the batches are used as priority keys. A packet in batch B{i) has higher priority than packets in
Uf>i BU)- Tne edges of each splitter are colored with 2k colors so that no two edges of the same color are
adjacent to one node. The algorithm works in iterations. In odd iterations, the edges connecting odd levels
to even levels are activated. In even iterations, the edges connecting even levels to odd levels are activated.
Edges are activated one after the other according to the color order. Thus, in each step, only one edge
adjacent to each processor is activated. When an edge from node (£, u) to node (£+1, v) is activated, if node
(£, u) stores in its buffer a packet with higher priority than the packet stored in the buffer of (£ + 1, u), the
two nodes exchange packets. (An empty buffer is considered a packet with the lowest priority.) We extract
the following Lemma from Upfal's analysis [35].

Lemma 5.1 Suppose the batches are chosen so that no more than am packets from each batch are routed
through any splitter of size m. Then each packet has reached its destination in time 0(logn + L).

For permutations, it is easy to split the packets into 0(1) batches that fulfill the above condition. As
a consequence, several permutations can be pipelined so that Upfal's algorithm takes time 0(logn + h) for
routing h permutations. Note that any /i-relation can be split into h disjoint permutations, but it is not
clear how to decompose an h relation into h disjoint permutations on the multibutterfly. Thus, the main
problem of routing /«-relations is to split the packets into appropriate batches.

Mo Mx M. 2d/K-l

Level 0

Level p

Level d

Figure 3: The submultibutterflies of size K on the levels p to d.

The new algorithm. Define K to be the smallest power of 2 with K > h/a, and define p := d- log K. For
0 < i < 2d/« - 1, define M,- to be the (log «;)-dimensional submultibutterfly with node set

{{!,3)\p<l<d,\JlK\=i} .

12

Each Mi has K inputs on level p and K outputs on level d. APii is the input set of M,-. Figure 3 illustrates
the situation. Our algorithm works in three phases.

• Phase 1: Partition the packets into L := 2/c batches 5(0),. ..,B(L - 1) such that B(i) contains the
packets with destination nodes in the set {(d, v) \ v (mod L) = i}.
Route the packets with Upfal's algorithm into the "correct" submultibutterfly whose inputs lie on level
p, i.e., route each packet with destination (d, v) to an arbitrary node in Ap\v/R\.
For each node (p,v) on level p, store all arriving packets in the column of (p,v), i.e., at a node (£,v)
with — (h — 1) < £ < d, such that each node has to store at most a constant number of packets.

• Phase 2: Give each of the packets with the same destination a unique rank, i.e., for each M,- and each
output node (d, v) of M,-, number the packets with destination (d, v) from 0 to ft - 1.

• Phase 3: Partition the packets into L := K ■ [2/a] batches B(i + j ■ K) := B(i,j) with 0 < i < K - 1
and 0 < j < [2/a] - 1. B(i,j) contains each packet p with rank i and a destination in {(d,v)\v

(mod\)2/a]=j}.
Finally, complete the routing with Upfal's protocol according to the new batches.

Intuitively, we have split the /i-relation in Phase 2 into h disjoint relations R0,..., Rh_i according to their
ranks so that all packets in Ü,- have distinct destination.

Theorem 5.2 The above algorithm routes an arbitrary h-relation in time 0(logn + h).

Proof: We have to prove that none of the splitters of size m is traversed by more than am packets. In
Phase 1, the number of packets from a batch B(j) passing through the i-th splitter on level £ of size m is at
most

h ■ \{v | v (mod L) = j, [v/m\ = i}\ < hm/L + h < am/2 + h .

Since the packets route only through the level 0 to p - 1 = d - log K - 1 in Phase 1, we have to consider only
splitters of size m > 2/c. Hence, h < an < am/2, and thus the number of packets passing through a splitter
of size m is at most am/2 + h < am. In Phase 3, the number of packets passing through a splitter of size
m is at most

m/\2/a] + 1 < am ,

for m > 1/a. (We assume that splitters of size m < \/a are completely connected.) As a consequence,
Phase 1 and Phase 3 can be done in time 0(logn + L) = 0(logn + h).

Note that the bound on the routing time for Phase 1 also guarantees that all packets received by a node
on level p can be stored in the respective column such that each node has to store a constant number of
packets. This is because each column consists of h + log n nodes, and each node on level p can receive at
most one packet per time step.

Finally, we have to show how the ranks in Phase 2 can be computed efficiently. For each output node
(d, u) in the submultibutterfly B, this can be done by a prefix computation. After this computation each
node (p, v) on the input level of B knows the number of packets with destination (d, u) that are stored in the
columns with smaller indices than v, i.e., the number of packets stored at nodes (£,w) with w < v. Thus,
node (d, u) can compute an disjoint range of ranks for the packets stored in its column.

K prefix computations can be performed in time K on each of the submultibutterflies. Thus, the ranks
can be computed and distributed among the packets in the columns in time 0(h + logn), which completes
our proof. □

In the above algorithm, we have assumed that the value of« is known in advance. In order to avoid this,
the algorithm can double the value of K beginning with some K > log n and test for each K if Phase 1 can be
completed in the time stated above. Note that this increases the routing time by a factor of at most 2.

A more practical solution. When h is known in advance, and h = O(logn), another practical solution
is to replace the «-input submultibutterflies with K X K meshes of trees.

A K x K mesh of trees consists of an array of nodes with K rows and K columns. The nodes in each row
serve as the leaves of a complete binary tree called a row tree, and the nodes in each column serve as the

13

leaves in a column tree. Hence, node (i, j) in the array serves as both the ith leaf in the jth column tree,
and the jth leaf in the ith row tree. An /i-relation can be routed between the roots of the column trees and
the roots of the row trees in 0(h + log«) steps by simply routing each packet down its column tree to the
appropriate row, and then up through the row tree to its root.

In our application, the roots of the column trees in a mesh of trees replace the inputs of a /c-input
submultibutterfly, and the roots of the row trees replace its outputs. A K x K mesh of trees has 3K

2
 -2K =

Q(K
2
) nodes. Since there are U/K meshes of trees, they contain a total of Q(n-n) nodes. For h = O(logn) (and

hence K = O(logn)), this total is 0(n logn), the same as the number of nodes in an n-input multibutterfly.
Thus, replacing the submultibutterflies by the meshes of trees does not increase the asymptotic number of
nodes. Also, the VLSI layout area of a K X K mesh of trees is 9(K

2
 log2 K). Since there are TI/K of them, their

total VLSI layout area is 0(n • K log2 K). Since the layout area of the multibutterflies is 0(ra2), replacing the
submultibutterflies with the meshes of trees does not increase the asymptotic VLSI layout area.

6 Simulating expansion on a 2-folded butterfly

The set of edges in a concentrator of a 2-folded butterfly can be split into disjoint subsets such that the
edges in each of these subsets forms a cycle. As a consequence, if we consider, e.g., the left concentrator on
level 0, there exists an arbitrarily large subset X C A0,o with \T(X) D A1>0| < \X\ + 1. This means that a
2-folded butterfly has poor expansion properties. However, the following theorem shows that the effective
expansion can be improved by simulating multibutterflies with higher degree.

Theorem 6.1 For any ß < l/(4a), there exists 2-folded butterfly A that can simulate with constant slow-
down a multibutterfly B of the same size that has (a, ß)-expansion.

Proof: We describe a d-dimensional 2-folded butterfly A and an equal-sized multibutterfly B of degree
4k such that A can simulate B with constant slowdown. A and B will be constructed randomly, and we
will prove that the probability that B has (a,/?)-expansion is bigger than 0. This proves that there exists a
multibutterfly B with appropriate expansion that can be simulated on a 2-folded butterfly A.

Consider the first k levels of the 2-folded butterfly A. We define these levels by describing the underlying
butterfly networks BFi and BF2, i.e., the two butterflies from which A can be constructed. We assume that
BFX has the "usual" butterfly node labels, i.e., the edges of BFi connect a node (£, v0, ■ ■ ■, t>d-i) on level £
to the nodes (£ + l,v0,.. .,vt,..., vd-\) and (£ + 1, v0,..., vt,..., vd-i) on level £+1.

BF2 is defined randomly. For any 1 < i < k and x G {0, l}fc, suppose <f>kiX is a permutation cho-
sen randomly and uniformly from the set of permutations on {0,1}^"*. Then each node (£,v) with
v = (v0,. ■ ■, Vd-i) € {0, l}d is connected by a ßF2-edge to node

(£+l,v0,..., vk-i, <f>t+i, („0>...,„*_!)(?>*,..., Vd-x)) .

Intuitively, this edge flips randomly the last d-k bits of the node labels. (The second 5F2-edge of the node
which leads to level £ + 1 can be chosen arbitrarily.)

Next we define the first k levels of multibutterfly B with degree 2k. Consider level £ of B with 0 < £ < jfe-l.
Suppose TTiyX is a permutation chosen randomly and uniformly from the set of permutations on {0, l}h~e,
for 1 < i < k and x G {0,l}d-(k-l\ Let (£,v) be a node on level £ with v = (v0,...,vd-i) G {0, l}d.
Define x := v0,...,vt-i, y := vi+i,...,vk, and z := vk+i,.. .,vd-i- Further, define ?/■ := 'Kii(XioiZ){y),
and z'i := <f>^Xi0iy^{z), for 1 < i < k. Intuitively, the w-permutations switch randomly the y-bits and the
(/i-permutations switch randomly the z-bits. We connect (£, v) = (£, (x, {0,1}, y, z)) with 2k nodes on level
£ + 1, i.e. with the nodes

(£+l,(x,0,y'i,z^)) and (£+ 1, (*, 1,^*0) ,

for 1 < i < k. It is easy to check that all edges are inside the splitters and that each node on level £ + 1 is
the endpoint of 2k edges. Thus, B is a multibutterfly with degree 4k. Note that all edges in a concentrator
on level £ are chosen independently (except that some of them are not allowed to end at nodes on level £ + 1
which have the same y- and 2-bits).

14

The 2-folded butterfly A can simulate B with constant slowdown since there is a path in A of length at
most 2k + 1 from (£, v) to any adjacent node on level £ + 1. For 1 < i < k and b, b' £ {0,1}, this path can
be constructed as follows

(£,v) = (£,(x,b,y,z))

-+BFl.^ (k,(x,b',ti,z))

-+BFl.-+ (i+l,M', »$,*))
B42 (i,(x,b>,y>,zM

-+BF)^ (*+l,M',yU)) •

We now investigate the expansion of B. Consider one of the concentrators in the first k levels. It consists
of a node set A := At,i and a node set B := ^+i,2i(+i) with 0 < £ < k - 1 and 0 < i < I1 - 1. Define
m := |A|. The probability that all edges in these concentrator that are incident to nodes in a subset X C A

have their endpoints in a subset Y C B is at most (2|y|/m)fe|X|. As a consequence, the probability that the
concentrator has no (a,/3)-expansion is at most

L^J (2.ß.v •

fi = l XCA YCB

vJH (m ^ c>-ß-^k"
[a-mj

< Z) {<*k~l~P-el+ß ■{1ß)k-ßY ■
,1=1

We choose k > (/3-ln(l/(2a/?))+ln(4/a)+2)/log(l/(4a/?)). Then the above term that bounds the probability
of a bad event in one concentrator by 2Ä_1. Thus, the probability that all 2k+l concentrators have (a,/?)-
expansion on the first k levels is greater than 0. Consequently, we can choose the edges of A so that A can
simulate the first k levels of a Multibutterfly with (a, beta) expansion. The levels k to d - 1 of A can be
viewed as 2k independent 2-folded Butterflies of dimension d—k. Applying the above scheme recursively to
these butterflies completes our proof. □

7 Open problems

We conclude with a few open problems.

1. Can an ./V-node multibutterfly whose splitters have an (a,/?)-expansion property be embedded with
constant load, congestion, and dilation, in an 0(iV)-node AKS network whose e-halvers have an (a,ß)
(or better) expansion property?

2. What is the complexity of selecting the fcth largest item from among M items on an TV-node bounded-
degree network for for w(l) < M/N < o(logTV4oglog(M'/'AT))?

8 Acknowledgements

The authors would like to thank Friedhelm Meyer auf der Heide and Christian Scheideier for many helpful
discussions.

15

References

[1] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting in clogn parallel steps. Combinatorica, 3:1-19, 1983.

[2] S. Arora, F. T. Leighton, and B. M. Maggs. On-line algorithms for path selection in a non-blocking
network. SIAM Journal on Computing, 25(3):600-625, June 1996.

[3] L. A. Bassalygo and M.S. Pinsker. Complexity of an optimum nonblocking switching network without
reconnections. Problems of Information Transmission, 9:64-66, 1974.

[4] K. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint Com-
puting Conference, volume 32, pages 307-314, 1968.

[5] P. Berthome, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton. Sorting-based selection algo-
rithms for hypercubic networks. In Proceedings of the 7th International Parallel Processing Symposium,
pages 89-95, April 1993.

[6] G. Bilardi and F. P. Preparata. A minimum VLSI network for 0(log TV) time sorting. IEEE Transactions
on Computers, C-34(4):336-343, April 1985.

[7] G. Bilardi and F. P. Preparata. The VLSI optimality of the AKS sorting network. Information Processing
Letters, 20(2):55-59, February 1985.

[8] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. Journal
of Computer and System Sciences, 7:448-461, 1973.

[9] E. A. Brewer, F. T. Chong, and F. T. Leighton. Scalable expanders: Exploiting hierarchical random
wiring. In Proceedings of the 26th Annual ACM Symposium on the Theory of Computing, pages 144-152,
May 1994.

[10] F. Chong, E. Egozy, and A. DeHon. Fault tolerance and performance of multipath multistage intercon-
nection networks. In T. F. Knight, Jr. and J. Savage, editors, Advanced Research in VLSI: Proceedings
of the MIT/Brown Conference 1992. MIT Press, March 1992. To appear.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[12] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on the hypercube
and related computers. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
pages 193-203, May 1990.

[13] A. DeHon, T. F. Knight Jr., and H. Minsky. Fault-tolerant design for multistage routing networks. In
Proceedings of the International Symposium on Shared Memory Multiprocessing, pages 60-71. Informa-
tion Processing Society of Japan, April 1991.

[14] A. DeHon, T. F. Knight Jr., and H. Minsky. Fault-tolerant design for multistage routing networks.
In Norihisa Suzuki, editor, Shared Memory Multiprocessing, chapter 20, pages 483-503. MIT Press,
Cambridge, MA, 1992.

[15] A. V. Goldberg, B. M. Maggs, and S. A. Plotkin. A parallel algorithm for reconfiguring a multibutterfly
network with faulty switches. IEEE Transactions on Computers, 43(3):321-326, March 1994.

[16] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards efficiency and portability: Program-
ming with the BSP model. In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 1-12, June 1996.

[17] N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM, 42(5):1091-1106, Septem-
ber 1995.

16

[18] D. E. Knuth. The Art of Computer Programming, volume 3, Sorting and Searching. Addison-Wesley,
Reading, MA, second edition, 1973.

[19] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions on Computers,
C-34(4):344-354, April 1985.

[20] F. T. Leighton and B. M. Maggs. Fast algorithms for routing around faults in multibutterflies and
randomly-wired splitter networks. IEEE Transactions on Computers, 41(5):578-587, May 1992.

[21] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing and sorting on
fixed-connection networks. Journal of Algorithms, 17(l):157-205, July 1994.

[22] T. Leighton, D. Lisinski, and B. Maggs. Empirical evaluation of randomly-wired multistage networks.
In Proceedings of the 1990 IEEE International Conference on Computer Design: VLSI in Computers
& Processors, pages 380-385. IEEE Computer Society Press, September 1990.

[23] Y. Ma. An 0(nlogra)-size fault-tolerant sorting network. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing, pages 266-275, May 1996.

[24] G. A. Margulis. Explicit constructions of concentrators. Problemy Peredachi Informatsii, 9:325-332,
1973. In Russian.

[25] G. A. Margulis. Explicit constructions of concentrators. Problems of Information Transmission, 9:71-80,
1975.

[26] W. F. McColl. BSP programming. In G. E. Blelloch, K. M. Chandy, and S. Jagannathan, editors, Spec-
ification of Parallel Algorithms,Volume 18 of DIM ACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 25-35. American Mathematical Society, Providence, RI, May 1994.

[27] R. Miller and J. L. Reed. The Oxford BSP library: User's guide. Version 1.0. Oxford parallel technical
report, Oxford University Computing Laboratory, Oxford, England, 1994.

[28] M. S. Paterson. Improved sorting networks with 0(logN) depth. Algorithmica, 5:75-92, 1990.

[29] M. Pinsker. On the complexity of a concentrator. In 7th International Teletraffic Congress, pages
318/1-318/4,June 1973.

[30] N. Pippenger. Self-routing superconcentrators. Journal of Computer and System Sciences, 52(l):53-60,
February 1996.

[31] C. G. Plaxton. On the network complexity of selection. In Proceedings of the 30th Annual Symposium
on Foundations of Computer Science, pages 396-401, October 1989.

[32] C. G. Plaxton. Tight bounds for a distributed selection game with applications to fixed-connection
machines. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pages
114-122, October 1995.

[33] K. J. Rappoport. On the slowdown of efficient simulations of multibutterflies. In Proceedings of the 8th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 176-182, June 1996.

[34] J. H. Reif and L. G. Valiant. A logarithmic time sort for linear size networks. Journal of the ACM,
34(l):60-76, January 1987.

[35] E. Upfal. An O(logJV) deterministic packet routing scheme. In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pages 241-250, May 1989.

[36] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103-111,
August 1990.

[37] U. Vishkin. An optimal parallel algorithm for selection. In Parallel and Distributed Computing. Volume 4
of Advances in Computing Research, pages 79-86. JAI Press, Greenwich, CT, 1987.

17

